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1 Spectral Theorems for Compact Operators

1.1 Spectral theorem for compact, self-adjoint operators

Last time, we proved the following propositions about eigenvalues of compact operators.

Proposition 1.1. Let T ∈ B0(H) and λ ∈ σp(T ) \ {0}. Then dim ker(T − λ1) <∞.

Proposition 1.2. Let T ∈ B0(H), and let λ 6= 0. Assume that

inf{‖(T − λ)h‖ : ‖h‖ = 1} = 0.

Then λ ∈ σp(T ).

Theorem 1.1 (Spectral theorem1 for self-adjoint operators). Suppose T is comapct and
self adjoint. Then

1. σp(T ) is countable.

2. If σp(T ) \ {0} = {λ1, λ2, . . . } and Pn is the projection onto ker(T − λn), then

• PnPm = PmPn = 0 for all m 6= n (i.e. ker(T − λn) ⊥ ker(T − λm)).

• λn ∈ R for all n.

• T =
∑∞

n=1 λnPn in ‖ · ‖op.

The last sum should be thought of as an infinite block diagonal matrix where the blocks
are λiIranPi .

Lemma 1.1. If T is normal, ker(T − λ) = ker(T ∗ − λ) is a reducing subspace.

Proof. If x ∈ ker(T − λ), then (T − λ)Tx = T (T − λx) = 0. Then Tx ∈ ker(T − λ), and
same for T ∗.

1Tim learned about the spectral theorem at the same time when he was preparing for his driving test.
This was a dangerous idea.
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Lemma 1.2. Let T be self-adjoint. If λ, µ are eigenvalues with λ 6= µ, then ker(T − λ) ⊥
ker(T − µ).

Proof. Let x ∈ ker(T − λ) and y ∈ ker(T − µ). Then

λ 〈x, µ〉 = 〈λx, y〉 = 〈Tx, y〉 = 〈x, Ty〉 = 〈x, µy〉 = µ 〈x, y〉

So 〈x, y〉 = 0.

Lemma 1.3. If T is self-adjoint, then σp(T ) ⊆ R.

Proof. If x ∈ ker(T − λ) \ {0}, then

λ 〈x, x〉 = 〈λx, x〉 = 〈Tx, x〉 = 〈x, Tx〉 = λ 〈x, x〉 ,

so λ = λ.

Lemma 1.4. Let T be compact and self-adjoint. Then at least one of ‖T‖op,−‖T‖op ∈
σp(T ).

Proof. Recall that
‖T‖ = sup{| 〈Tx, x〉 | : ‖x‖ = 1}.

Since 〈Tx, x〉 = 〈x, Tx〉 = 〈Tx, x〉, we will assume that this equals sup{〈Tx, x〉 : ‖x‖ = 1}
(the other case is the negative case). Suppose ‖xn‖ = 1 and 〈Txn, xn〉 → 1. Then

‖Txn − λxn‖2 = 〈Txn, Txn〉︸ ︷︷ ︸
≤λ2

− 2λ 〈Txn, x−N〉︸ ︷︷ ︸
→−2λ2

+λ2‖xn‖2.

By the lemma, λ ∈ σp(X).

Proof. If ‖T‖ ∈ σp(T ), let λ1 = ‖T‖, and let P1 be the projection onto ker(T − λ1) (this is
reducing). Now consider T1 = T |ker(T−λ1)⊥ . This is compact, self-adjoint, and ‖T1‖ ≤ ‖T‖.
If −‖T‖ ∈ σp(T1), let λ2 = −‖T‖ and P2 = Pker(T−λ2). Then let T2 := T (1−P1)(1−P2) =
T |(ker(T−λ1)+ker(T−λ2))|perp. Now ‖T2‖ < ‖T‖.

Continue to produce a sequence of eigenvalues ‖lambda3, λ4, λ5, . . . such that |λ1| ≥
|λ2| ≥ |λ3| ≥ |λ4| ≥ · · · and a sequence of projections Pi onto ker(T −λi). In this sequence
of eigenvalues, there are no consecutive equalities. Also, we have |λi+1| = ‖Ti+1‖ and
Ti+1 := T (1− P1) · · · (1− Pi).

Next, we show that |λi| → 0. If not, let xi ∈ ker(T − λi) be such that ‖xI‖ = 1. Then
Txi = λixi is a sequence of orthogonal vectors not going to 0, contradicting compactness.

Now consider S =
∑∞

i=1 λiPi. We want to show that S = T . Call SN =
∑N

i=1 λiPi. We
have by Parseval’s theorem that

‖(S − SN )x‖2 =

∥∥∥∥∥
∞∑

i=N+1

λiPix

∥∥∥∥∥
2

=
∞∑

i=N+1

|λ|2‖Pix‖2 ≤ |λN+1|
∞∑

i=N+1

‖Pix‖2 → 0.

2



Now

(T − SN )x = (T − SN )x1 + (T − SN )x2

where x1 = (P1 + · · ·+ PN )x, x2 = x− x1 ⊥ span(ker(T − λ1), . . . , ker(T − λN ). Now split
x1 = P1x1 + · · ·+ PNx1 = x1,1 + · · ·+ x1,N to get

=
N∑
i=1

(T − SN )x1,i + (T − Sn)X2

= Tx2.

And we also have

‖Tx2‖ = ‖TN+1x2‖ ≤ |λN+1|‖x2‖ ≤ |λN+1|‖x‖ → 0.

Finally, we have enumerated all the eigenvalues, so there are only countably many.

The proof gives us the following facts, as well.

Corollary 1.1. Let T be compact and self-adjoint.

1. The Pn each have finite rank.

2. |λn| → 0.

3. kerT = (
∑

n ranPn)⊥

Here is a formulation which makes this look even more like diagonalization:

Corollary 1.2. There exist an orthonormal basis (en)n for (kerT )⊥ and (µn)n in R with
µn → 0 such that

Tx =
∑
n

µn 〈x, en〉 en, ∀x ∈ H.

Proof. Let T =
∑

m λmPm. Convert to the above form. Each λm appears dimPm-many
times as a µm.

1.2 Spectral theorem for compact, normal operators

If N is normal, then N = S + iT , where S, T are self-adjoint and ST = TS. T and S are
linear combinations of N and N∗, so if N is comapct, so are S, T .

Proposition 1.3. Suppose S =
∑∞

i=1 αiPi with αi ∈ F distinct (and nonzero) and Pi
orthogonal projections, If ST = TS, then PiTPi = TPi for all i. If S is self-adjoint, then
PiT = TPi for all i.

3



Proof. Check that ker(S − αi) = ranPi. If Sx = αix, then STx = TSx = T (αix) = αiTx.
This shows that PiTPi = TPi.

If S = S∗, then Pi reduces T for all i:

ST ∗ = S∗T ∗ = (TS)∗ = (ST )∗ = T ∗S∗ = T ∗S.

So PiT = TPi.

Theorem 1.2 (Spectral theorem for compact, normal operators). Let N be comapct and
normal. Then

1. σp(T ) is countable.

2. If σp(T ) \ {0} = {λ1, λ2, . . . } and Pn is the projection onto ker(T − λn), then

• PnPm = PmPn = 0 for all m 6= n (i.e. ker(N − λn) ⊥ ker(N − λm)).

• N =
∑∞

n=1 λnPn in ‖ · ‖op.

Proof. Let N = S+ iT with S, T self-adjoint, and write S =
∑

k≥1 λ
S
kP

S
k . Now PSk reduces

T for all k. Now choose a further decomposition PSk = Qk,1 + · · · + Qk,mk
such that

TPSk = TQk,1 + · · · + TQk,mk
= βTk,1Qk,1 + · · · + βTk,mk

Qk,mk
. Now S =

∑
k

∑mk
i=1 λ

S
kQk,i,

and T =
∑

k

∑mk
i=1 βk,1Qk,i. So

S + iT =
∑
k

mk∑
i=1

(λSk + iβk,i)Qk,i.

Check that βk,i → 0 and that Qk,iQ`,j = Q`,jQk,i = 0.

For non-compact operators, we will have an analogous result that gives T =
∫ b
a λ dE(λ).

We have to make sense of this integral.
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