Math 255A' Lecture 19 Notes

Daniel Raban

November 13, 2019

1 Spectral Theorems for Compact Operators

1.1 Spectral theorem for compact, self-adjoint operators

Last time, we proved the following propositions about eigenvalues of compact operators.

Proposition 1.1. Let $T \in \mathcal{B}_0(H)$ and $\lambda \in \sigma_p(T) \setminus \{0\}$. Then dim ker $(T - \lambda 1) < \infty$.

Proposition 1.2. Let $T \in \mathcal{B}_0(H)$, and let $\lambda \neq 0$. Assume that

$$\inf\{\|(T-\lambda)h\|:\|h\|=1\}=0.$$

Then $\lambda \in \sigma_p(T)$.

Theorem 1.1 (Spectral theorem¹ for self-adjoint operators). Suppose T is comapct and self adjoint. Then

- 1. $\sigma_p(T)$ is countable.
- 2. If $\sigma_p(T) \setminus \{0\} = \{\lambda_1, \lambda_2, \dots\}$ and P_n is the projection onto $\ker(T \lambda_n)$, then
 - $P_n P_m = P_m P_n = 0$ for all $m \neq n$ (i.e. $\ker(T \lambda_n) \perp \ker(T \lambda_m)$).
 - $\lambda_n \in \mathbb{R}$ for all n.
 - $T = \sum_{n=1}^{\infty} \lambda_n P_n$ in $\|\cdot\|_{\text{op}}$.

The last sum should be thought of as an infinite block diagonal matrix where the blocks are $\lambda_i I_{\operatorname{ran} P_i}$.

Lemma 1.1. If T is normal, $\ker(T - \lambda) = \ker(T^* - \lambda)$ is a reducing subspace.

Proof. If $x \in \ker(T - \lambda)$, then $(T - \lambda)Tx = T(T - \lambda x) = 0$. Then $Tx \in \ker(T - \lambda)$, and same for T^* .

¹Tim learned about the spectral theorem at the same time when he was preparing for his driving test. This was a dangerous idea.

Lemma 1.2. Let T be self-adjoint. If λ, μ are eigenvalues with $\lambda \neq \overline{\mu}$, then ker $(T - \lambda) \perp$ ker $(T - \mu)$.

Proof. Let $x \in \ker(T - \lambda)$ and $y \in \ker(T - \mu)$. Then

$$\lambda \langle x, \mu \rangle = \langle \lambda x, y \rangle = \langle Tx, y \rangle = \langle x, Ty \rangle = \langle x, \mu y \rangle = \overline{\mu} \langle x, y \rangle$$

So $\langle x, y \rangle = 0$.

Lemma 1.3. If T is self-adjoint, then $\sigma_p(T) \subseteq \mathbb{R}$.

Proof. If $x \in \ker(T - \lambda) \setminus \{0\}$, then

$$\lambda \langle x, x \rangle = \langle \lambda x, x \rangle = \langle Tx, x \rangle = \langle x, Tx \rangle = \overline{\lambda} \langle x, x \rangle,$$

so $\lambda = \overline{\lambda}$.

Lemma 1.4. Let T be compact and self-adjoint. Then at least one of $||T||_{op}$, $-||T||_{op} \in \sigma_p(T)$.

Proof. Recall that

$$||T|| = \sup\{|\langle Tx, x \rangle| : ||x|| = 1\}$$

Since $\langle Tx, x \rangle = \langle x, Tx \rangle = \overline{\langle Tx, x \rangle}$, we will assume that this equals $\sup\{\langle Tx, x \rangle : ||x|| = 1\}$ (the other case is the negative case). Suppose $||x_n|| = 1$ and $\langle Tx_n, x_n \rangle \to 1$. Then

$$||Tx_n - \lambda x_n||^2 = \underbrace{\langle Tx_n, Tx_n \rangle}_{\leq \lambda^2} - \underbrace{2\lambda \langle Tx_n, x - N \rangle}_{\rightarrow -2\lambda^2} + \lambda^2 ||x_n||^2.$$

By the lemma, $\lambda \in \sigma_p(X)$.

Proof. If $||T|| \in \sigma_p(T)$, let $\lambda_1 = ||T||$, and let P_1 be the projection onto $\ker(T - \lambda_1)$ (this is reducing). Now consider $T_1 = T|_{\ker(T-\lambda_1)^{\perp}}$. This is compact, self-adjoint, and $||T_1|| \leq ||T||$. If $-||T|| \in \sigma_p(T_1)$, let $\lambda_2 = -||T||$ and $P_2 = P_{\ker(T-\lambda_2)}$. Then let $T_2 := T(1-P_1)(1-P_2) = T|_{(\ker(T-\lambda_1)+\ker(T-\lambda_2))|_{perp}}$. Now $||T_2|| < ||T||$.

Continue to produce a sequence of eigenvalues $||lambda_3, \lambda_4, \lambda_5, \ldots$ such that $|\lambda_1| \geq |\lambda_2| \geq |\lambda_3| \geq |\lambda_4| \geq \cdots$ and a sequence of projections P_i onto $\ker(T - \lambda_i)$. In this sequence of eigenvalues, there are no consecutive equalities. Also, we have $|\lambda_{i+1}| = ||T_{i+1}||$ and $T_{i+1} := T(1 - P_1) \cdots (1 - P_i)$.

Next, we show that $|\lambda_i| \to 0$. If not, let $x_i \in \ker(T - \lambda_i)$ be such that $||x_I|| = 1$. Then $Tx_i = \lambda_i x_i$ is a sequence of orthogonal vectors not going to 0, contradicting compactness.

Now consider $S = \sum_{i=1}^{\infty} \lambda_i P_i$. We want to show that S = T. Call $S_N = \sum_{i=1}^{N} \lambda_i P_i$. We have by Parseval's theorem that

$$\|(S-S_N)x\|^2 = \left\|\sum_{i=N+1}^{\infty} \lambda_i P_i x\right\|^2 = \sum_{i=N+1}^{\infty} |\lambda|^2 \|P_i x\|^2 \le |\lambda_{N+1}| \sum_{i=N+1}^{\infty} \|P_i x\|^2 \to 0.$$

	_	
	_	
_	_	

Now

$$(T - S_N)x = (T - S_N)x_1 + (T - S_N)x_2$$

where $x_1 = (P_1 + \dots + P_N)x, x_2 = x - x_1 \perp \text{span}(\ker(T - \lambda_1), \dots, \ker(T - \lambda_N))$. Now split $x_1 = P_1x_1 + \dots + P_Nx_1 = x_{1,1} + \dots + x_{1,N}$ to get

$$= \sum_{i=1}^{N} (T - S_N) x_{1,i} + (T - S_n) X_2$$

= $T x_2$.

And we also have

$$||Tx_2|| = ||T_{N+1}x_2|| \le |\lambda_{N+1}|||x_2|| \le |\lambda_{N+1}|||x|| \to 0.$$

Finally, we have enumerated all the eigenvalues, so there are only countably many. \Box

The proof gives us the following facts, as well.

Corollary 1.1. Let T be compact and self-adjoint.

- 1. The P_n each have finite rank.
- 2. $|\lambda_n| \to 0.$
- 3. ker $T = (\sum_n \operatorname{ran} P_n)^{\perp}$

Here is a formulation which makes this look even more like diagonalization:

Corollary 1.2. There exist an orthonormal basis $(e_n)_n$ for $(\ker T)^{\perp}$ and $(\mu_n)_n$ in \mathbb{R} with $\mu_n \to 0$ such that

$$Tx = \sum_{n} \mu_n \langle x, e_n \rangle e_n, \qquad \forall x \in H.$$

Proof. Let $T = \sum_{m} \lambda_m P_m$. Convert to the above form. Each λ_m appears dim P_m -many times as a μ_m .

1.2 Spectral theorem for compact, normal operators

If N is normal, then N = S + iT, where S, T are self-adjoint and ST = TS. T and S are linear combinations of N and N^* , so if N is comapct, so are S, T.

Proposition 1.3. Suppose $S = \sum_{i=1}^{\infty} \alpha_i P_i$ with $\alpha_i \in \mathbb{F}$ distinct (and nonzero) and P_i orthogonal projections, If ST = TS, then $P_iTP_i = TP_i$ for all *i*. If S is self-adjoint, then $P_iT = TP_i$ for all *i*.

Proof. Check that $\ker(S - \alpha_i) = \operatorname{ran} P_i$. If $Sx = \alpha_i x$, then $STx = TSx = T(\alpha_i x) = \alpha_i Tx$. This shows that $P_iTP_i = TP_i$.

If $S = S^*$, then P_i reduces T for all i:

$$ST^* = S^*T^* = (TS)^* = (ST)^* = T^*S^* = T^*S.$$

So $P_iT = TP_i$.

Theorem 1.2 (Spectral theorem for compact, normal operators). Let N be comapct and normal. Then

1. $\sigma_p(T)$ is countable.

- 2. If $\sigma_p(T) \setminus \{0\} = \{\lambda_1, \lambda_2, \dots\}$ and P_n is the projection onto $\ker(T \lambda_n)$, then
 - $P_n P_m = P_m P_n = 0$ for all $m \neq n$ (i.e. $\ker(N \lambda_n) \perp \ker(N \lambda_m)$).

•
$$N = \sum_{n=1}^{\infty} \lambda_n P_n$$
 in $\|\cdot\|_{\text{op}}$

Proof. Let N = S + iT with S, T self-adjoint, and write $S = \sum_{k \ge 1} \lambda_k^S P_k^S$. Now P_k^S reduces T for all k. Now choose a further decomposition $P_k^S = Q_{k,1} + \cdots + Q_{k,m_k}$ such that $TP_k^S = TQ_{k,1} + \cdots + TQ_{k,m_k} = \beta_{k,1}^T Q_{k,1} + \cdots + \beta_{k,m_k}^T Q_{k,m_k}$. Now $S = \sum_k \sum_{i=1}^{m_k} \lambda_k^S Q_{k,i}$, and $T = \sum_k \sum_{i=1}^{m_k} \beta_{k,1} Q_{k,i}$. So

$$S + iT = \sum_{k} \sum_{i=1}^{m_k} (\lambda_k^S + i\beta_{k,i}) Q_{k,i}$$

Check that $\beta_{k,i} \to 0$ and that $Q_{k,i}Q_{\ell,j} = Q_{\ell,j}Q_{k,i} = 0$.

For non-compact operators, we will have an analogous result that gives $T = \int_a^b \lambda \, dE(\lambda)$. We have to make sense of this integral.